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1.1 Matrices

i i 1 31
2 3 1

A= B=|2 1 4
1 -15

) ] 4 7 6

Both A and B are examples of matrix. A matrix
is a rectangular array of numbers enclosed by a
pair of bracket.

Why matrix?



1.1 Matrices

Consider the following set of equations:

X+y=T, It is easy to show that x =3 and
X-y=5 Y=4

<

X+y—-2z=1,
2X—Yy—471 =2,
—-5X+4y+10z =1,
| 3X—-y-62=03.

How about solving

Matrices can help...



1.1 Matrices

In the matrix
a21 a22 aZn

a

m?2 mn

"numbers a;are called elements. First subscript
indicates the row; second subscript indicates
the column. The matrix consists of mn elements

It is called "the m x n matrix A =[a;]" or simply
"the matrix A" if number of rows and columns
are understood.



1.1 Matrices

Square matrices

. a, A, ... a,
*Whenm=n, ie., N a,,
a‘nl an2 a‘nn_

A is called a "square matrix of order n" or
"n-square matrix"

=elements a,;, a,,, as;,..., &,, called diagonal
elements.

= > a;=a,-a,-.+a, s called the trace of A.
i=1



1.1 Matrices
Equal matrices

*Two matrices A =[a;] and B = [b;] are said to
be equal (A =B) iff each element of A is equal
to the corresponding element of B, i.e., a;=b;
forl1<i<m,1<j<n.

=iff pronouns "if and only if"
if A=B, it implies a;=b; for 1<i<m,1<j<n;
if a;=Db;for1<i<m,1<j<n,itimplies A=B.

7



1.1 Matrices

N

Equal matrices

1 0 a b
Example: A={_4 2} and B=L d}

Given that A =B, find a, b, cand d.

if A=B,thena=1,b=0,c=-4and d=2.




1.1 Matrices

Zero matrices

=Every element of a matrix is zero, it is called
a zero matrix, i.e.,




1.2 Operations of matrices

N

Sums of matrices

*If A=[a;] and B = [b;] are m x n matrices,
then A+ B is defined as a matrix C=A+ B,

where C=[c;], c; =a; +b; for1<i<m, 1<j<n.

Example: if A{(l) i ﬂ and B{_Zl 2 g}

Evaluate A + B and A — B.

1+2 2+3 3+0 3 5 3
A+B = =
O0+(-1) 1+2 4+5 -1 3 9
1-2 2-3 3-0 -1 -1 3
A—B= —
0-(-1) 1-2 4-5 1 -1 -1 10




1.2 Operations of matrices

Sums of matrices

*Two matrices of the same order are said to
be conformable for addition or subtraction.

*Two matrices of different orders cannot be
added or subtracted, e.g.,

2 3 7 1
1 15 2
4

are NOT conformable for addition or
subtraction. L

N B W

-
4
6_




1.2 Operations of matrices

N

L

Scalar multiplication

"Let ) be any scalar and A =[a;] is anm x n
matrix. Then 1A = [1a;] for 1< <m,1<j<n,
i.e., each element in Als multiplied by /.

1 2 3
o1 4]Evalua’re 3A.

A 3x1 3x2 3x3 + 3 6 9
|3x0 3x1 3x4| [0 3 12
*In particular, A =-1, i.e., -A =[-a;]. It's called
the negative of A. No’re A—A=0 isa zero ma’rrux

Example: A{



1.2 Operations of matrices

Properties
Matrices A, B and C are conformable,
sA+B=B+A (commutative law)
s"A+ (B+C)=(A+B)+C (associative law)

=)(A+B) = LA +AB, where A is a scalar
(distributive law)

Can you prove them?

13



1.2 Operations of matrices

N

L

Properties

Example: Prove A(A +B) = 1A + /B.

Let C=A+B,soc;=a;+b;

Consider Ac; = 4 (a; +b;) = Aa; + Ab;;, we have,
AC = 1A + AB.

Since AC=A4(A+B),so A(A+B)= 1A+ /B

14




1.2 Operations of matrices

N

L

Matrix multiplication

"If A=[a;] isa mxp matrix and B = [b;] is a

D x N ma’rr'lx then AB is defined as a m x n

ma’rr'ux C = AB, where C= [c;] with

C _Zalkbkj _allblj +a|2b21 + .. +a|pbpj fOI" 1 < < m 1 <J < n.

-1 2
1 2 3

Example: { } , B=| 2 3| and C=AB.

0 1 4
Evaluate c,,. 50

jl
LU 1

- _ 15

1
D
N

2
3| €, =0x(-1)+1x2+4x5=22
0




N

1.2 Operations of matrices

L

Matrix multiplication

1 2 3 Tt
Example: A= 0 1 4/:B=2 3 . Evaluate C = AB.
_5 O_

g (¢, =1x(-1)+2x2+3x5=18

123 > 3 % C, =1x24+2x3+3x0=8
—

0 1 4 £ 0 Cyy =0x(-1)+1x2+4x5=22

- 2] | C,, =0x2+1x3+4x0=3

Ermel

1 2 3 18 8
{o 1 4} {22 3}

16




1.2 Operations of matrices

N

L

Matrix multiplication

=Tn particular, Ais a 1 x m matrix and

Bisamx1matrix, i.e., b, |
b21

A=la, a, .. a,] B=
b

ml _|

then C = AB is a scalar.c => a,b, =a,b, +a,b, +..+a,b,
k=1

17



1.2 Operations of matrices

N

L

BA

b21

b

ml _|

Matrix multiplication

*BUT BA isam x m matrix!
bt

‘b.a, b,a,

[31 a, a, ]_ b21a11 b21a12
1 o | ash o= :

_bmlall bm1a12

=So AB #BA in general |

* bllaim |

b21a1m

bmlaim =




However

1.2 Operations of matrices

Properties
Matrices A, B and C are conformable,
"A(B+ C)=AB +AC
*(A+B)C=AC+BC
=A(BC) = (AB) C
"AB =#BA in general
*"AB =0 NOT necessarily imply A=0orB =0
*"AB = AC NOT necessarily imply B=C

19



1.2 Operations of matrices

N

L

Properties

Example: Prove A(B + C) = AB + AC where A, B
and C are n-square matrices

Let X=B + C, so x; =b;+c;. Let Y = AX, then
Yi = Zaik Xy = Zaik (bkj +ij)
k=1 k=1
= Z(aikbkj + ij) - Zaikbkj + Zaikckj
k=1 k=1 k=1

So Y =AB + AC; therefore, A(B+ C) =AB + AC

20




1.3 Types of matrices

=Tdentity matrix

*The inverse of a matrix
*The transpose of a matrix
=Symmetric matrix
=Orthogonal matrix

21



1.3 Types of matrices
Identity matrix

A square matrix whose elements a; = 0, for

i > j is called upper triangular, i.e.,

"A square matrix whose elements a; = 0, for

| <j is called lower triangular, i.e.,

&y,
0

0

Ay
a'21

a‘nl

A,
a‘22

0

0

an2




1.3 Types of matrices
Identity matrix

*Both upper and lower triangular, i.e., a; = 0, for

Iij ’ i‘e°l _aﬂ 0 O—
D O a,, | 0
0 0 a,, |

is called a diagonal matrix, simply
D =diag[a,;,a,,,...,a,,]

23



N

1.3 Types of matrices
Identity matrix

*In particular, a;; =a,,=...=a,,= 1, the
matrix is called identity matrix.

"Properties: Al = IA=A

Examples of identity matrices: B ﬂ and

o O -

o — O

24
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1.3 Types of matrices
Special square matrix

N

L

"AB @I BA in general. However, if two square
matrices A and B such that AB = BA, then A
and B are said to be commute.

Can you suggest two matrices that must

commute with a square matrix A?
"' X1440W AL1LU2pPI1 Y4 ‘J|2S4! Y iSuy

=Tf A and B such that AB = -BA, then A and B
are said to be anti-commute.

25




1.3 Types of matrices
The inverse of a matrix

N

L

*Tf matrices A and B such that AB=BA =1,
then B is called the inverse of A (symbol: A1);
and A is called the inverse of B (symbol: B1).

(1 2 3 (6 -2 -3
Exqmple: A=l1 3 3| B=-1 1 O
124 -1 0 1

Show B is the the inverse of matrix A.

: AB=BA=
Ans: Note that =BA

Can you show the
details? 26

o O -
o - O
R O O




1.3 Types of matrices
The transpose of a matrix

N

L

=The matrix obtained by interchanging the
rows and columns of a matrix A is called the
transpose of A (write AT).

Example: A{l i 3}

4 5 6 (1 4]
The transpose of Ais A" =|2 5
3 6

*For a matrix A = [a;], its transpose AT= [b;],
where b;; = a;.

27




1.3 Types of matrices
Symmetric matrix

"A matrix A such that A" = Ais called symmetric,

i.e., a;=a; foralliandj

"A + A" must be symmetric. Why?

1 2 3
Example: A=|2 4 -5| is symmetric.
3 -5 6

*A matrix A such that AT = -Ais called skew-

symmetric, i.e., a; = -a; for all i and j.
"A - AT must be skew-symmetric. Why?

28



1.3 Types of matrices
Orthogonal matrix

N

L

"A matrix A is called orthogonal if AAT=ATA =1,
l.e., AT=A1

1/J3  1/J6  —1/42]

Example: prove that A=|1/v3 -2/\6 0 | is
orthogonal. 13 16 142 |

13 143 143
Since, A" =| 116 -2/J6 1/46|. Hence, AAT :\ATA: .
__1/\/5 | 1/\/5_ Can you show the
details?

We'll see that orthogonal matrix represents a
rotation in fact! 5




N

1.4 Properties of matrix

L

*(AB)! = B-1A1

*(ANT =Aand (1A)T = 1 AT
*(A+B)T=AT+ BT

*(AB)T = BT AT

30




1.4 Properties of matrix

N

L

Example: Prove (AB)* = B1A1
Since (AB) (B-1A) = A(B BY)AL = | and
(B1A1) (AB) = BL(A1 A)B = I.

Therefore, B'1Al is the inverse of matrix AB.

31




1.5 Determinants

Determinant of order 2

Consider a 2 x 2 matrix: A{

a,; alz}

a‘21 a22

*Determinant of A, denoted | Al is a number

and canh be eva

|Al=

uated by

Ay

=y 8, —apay
dy; Ay

32



N

[Al=

1.5 Determi

Determinant of order 2

A1

nants

=easy to remember (for order 2 only)..

2
= +8,,8,, —a;pay

+

1 2
Example: Evaluate the determinant: ‘3 4‘

3 4

‘12

=1x4-2x3=-2

33




1.5 Determinants

The following properties are true for
determinants of any order.

1. If every element of a row (column) is zero,

1 2 —
e.qg., ~1x0-2x0=0, then |A] = 0.
0 O
determinant of a matrix
2+ AT-=-15] = that of its transpose

3. |AB| = |A]|B]

34



1.5 Determinants

N

Example: Show that the determinant of any
orthogonal matrix is either +1 or —1.

For any orthogonal matrix, AAT=1.

Al = +1.

Since |AAT| = |A||AT] =1 and |AT| = |A|, SO |Al2=1 or

35




1.5 Determinants

N

L

Ay

For any 2x2 matrix A:L

Its inverse can be written as A —_{

Example: Find the inverse of A:{_l O}

The determinant of A is -2

Hence, the inverse of A is A™ :{

A,
a‘22

|

1
A

1 2

-1 0
1/2 1/2

How to find an inverse for a 3x3 matrix?

Ay,
—ay,

}

—a,

Ay

|

36




1 5 Determinants of order 3

/\

(1 2 3]

Consider an example: A=|4 5 6
789

Its determinant can be obtained by:

A=

4 sl 12 12
=3 |i6. |+9
78 |78 |45

~N &~ P
© g N
© o w

—3(-3)-6(—6)+9(-3)=0

You are encouraged to find the determinant
by using other rows or columns

37




1 6 Inverse of a 3x3 matrix

/‘\

(1 2 3]

Cofactor matrix of A=/0 4 5
1 0 6

Al_4 5_24 A&_05_ |0 4_4
0 6 21 6 11 0
Az_z 3 o N 3_3 B 12_2
o 6 2 6 11 oo
A3_23_2 A3_13_5A312
. Bt |G 2t 44

The cofactor for each element of matrix A:

38




K 1.6 Inverse of a 3x3 matrix

Cofactor matrix of A=

by:

cl) zzt 2 is then given
24 5 -4
-12 3 2
2 5 4

39




N

1
Tnverse matrix of A=|0
1

24 5 —4
12 3 2
2 5 4

1.6 Inverse of a 3x3 matrix

(24 12 -2
2 5 3 -5
22

-4 2 4

5/22  3/22

—2/11 111

12/11 -6/11 -1/11

3
5| iS given by:
6

_5/22

2111

40




