MATRICES AND DETERMINANTS

 Dr. NITAKSHI GOYAL Assistant Professor in Mathematics, Akal Degree College, Mastuana Sahib Punjab, India.

1.1 Matrices 1.2 Operations of matrices 1.3 Types of matrices 1.4 Properties of matrices 1.5 Determinants 1.6 Inverse of a 3×3 matrix

Both *A* and *B* are examples of matrix. A matrix is a rectangular array of numbers enclosed by a pair of bracket.

Why matrix?

Consider the following set of equations:

 $x + y - 2z = 7,$

Matrices can help…

▪numbers *aij* are called *elements*. First subscript indicates the row; second subscript indicates the column. The matrix consists of *mn* elements

Example 1 The $m \times n$ matrix $A = [a_{ij}]^n$ or simply "the matrix *A* " if number of rows and columns are understood.

n

Square matrices

n n nn

- ■*A* is called a "square matrix of order *n*" or " *n-*square matrix"
- ▪elements *a*11, *a*22, *a*33,…, *ann* called diagonal elements.

 $\sum a_{ii} = a_{11} + a_{22} + ... + a_{nn}$ is called the *trace* of A. 1 $\sum_{i=1} a_{ii} = a_{11} + a_{22} + ... + a_{nn}$ is calle $a_{ii} = a_{11} + a_{22} + ... + a_{nn}$ is called *i*=1

Equal matrices

•Two matrices $A = [a_{ij}]$ **and** $B = [b_{ij}]$ **are said to** be equal $(A = B)$ iff each element of A is equal to the corresponding element of *B*, i.e., $a_{ii} = b_{ii}$ for $1 \leq i \leq m, 1 \leq j \leq n$.

▪*iff* pronouns "if and only if"

if $A = B$, it implies $a_{ij} = b_{ij}$ for $1 \le i \le m$, $1 \le j \le n$;

if $a_{ij} = b_{ij}$ for $1 \le i \le m$, $1 \le j \le n$, it implies $A = B$.

Equal matrices

 $1 \quad 0 \quad a$ $4 \quad 2 \quad 3 \quad c$ $A =$ and $\begin{bmatrix} 1 & 0 \end{bmatrix}$ $=\begin{bmatrix} 4 & 2 \end{bmatrix}$ and $B=$ *a b B* = 1 *c d* $\begin{bmatrix} a & b \end{bmatrix}$ Example: $A = \begin{bmatrix} 1 & 0 \\ -4 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 0 \\ c & d \end{bmatrix}$

Given that $A = B$, find a, b, c and d .

if $A = B$, then $a = 1$, $b = 0$, $c = -4$ and $d = 2$.

Zero matrices

▪Every element of a matrix is zero, it is called a zero matrix, i.e.,

두 마을 그는 그 그 말을 먹으라고 말.

 $A =$

 $0 \quad 0 \quad 0$

 $\begin{bmatrix} 0 & 0 & \ldots & 0 \end{bmatrix}$

 $0 \quad 0 \quad$

 $0 \quad 0 \quad 0$

 $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$

Sums of matrices

10 \blacksquare If $A = [a_{ij}]$ and $B = [b_{ij}]$ are $m \times n$ matrices, then $A + \tilde{B}$ is defined as a matrix $C = A + B$, where $C = [c_{ij}]$, $c_{ij} = a_{ij} + b_{ij}$ for $1 \le i \le m, 1 \le j \le n$. 1 2 3 $0 \quad 1 \quad 4 \quad 1 \quad 1$ $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$ **Example:** if $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 4 \end{bmatrix}$ S
 $matrix 2, 2$
 $C = A + B,$
 $\le i \le m, 1 \le j \le n.$
 $2, 3, 0$
 $-1, 2, 5$
 $5, 3$ matrices,
 $C = A + B$,
 $i \le m, 1 \le j \le n$.
 $\begin{bmatrix} 3 & 0 \\ 1 & 2 & 5 \end{bmatrix}$

5 3

3 9 25

S

n matrices,
 $x \ C = A + B,$
 $\le i \le m, 1 \le j \le n.$
 $\begin{bmatrix} 2 & 3 & 0 \\ -1 & 2 & 5 \end{bmatrix}$

3 5 3] **CES**

es

x n matrices,

rix $C = A + B$,
 $1 \le i \le m$, $1 \le j \le n$.
 $= \begin{bmatrix} 2 & 3 & 0 \\ -1 & 2 & 5 \end{bmatrix}$
 $= 3$ 5 3
 -1 3 9 Evaluate $A + B$ and $A - B$. $1+2$ 2 + 3 3 + 0 3 3 5 3 $0+(-1)$ $1+2$ $4+5$ | -1 3 9 $\begin{bmatrix} 1+2 & 2+3 & 3+0 \end{bmatrix}$ $\begin{bmatrix} 3 & 5 & 3 \end{bmatrix}$ $A + B = \begin{bmatrix} 0 + (-1) & 1 + 2 & 4 + 5 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 9 \end{bmatrix}$ $1 - 2$ $2 + 3$ $3 - 0$ -1 -1 3 $0 - (-1)$ $1 + 2$ $4 - 5$ | 1 -1 -1 1 1 -1 $\begin{bmatrix} 1-2 & 2-3 & 3-0 \end{bmatrix}$ $\begin{bmatrix} -1 & -1 & 3 \end{bmatrix}$ $A - B =$ $\begin{bmatrix} 0 & -(-1) & 1 & -2 & 4 & -5 \end{bmatrix}$ $=$ $\begin{bmatrix} 1 & -1 & -1 \end{bmatrix}$ 10

Sums of matrices

▪Two matrices of the same order are said to be *conformable* for addition or subtraction.

▪Two matrices of different orders cannot be added or subtracted, e.g.,

1 3 1

 $\begin{bmatrix} 1 & 3 & 1 \end{bmatrix}$

 $1 + 1$ 5 7 $\begin{bmatrix} 2 & 3 & 7 \end{bmatrix}$ $\begin{bmatrix} 1 & -1 & 5 \end{bmatrix}$ 2 1 4 4 7 6 $\begin{bmatrix} 4 & 7 & 6 \end{bmatrix}$

are NOT conformable for addition or $\begin{array}{c|c} & 2 & 3 & 7 \ \hline 1 & -1 & 5 \end{array}$
are NOT conformable for a
subtraction.

Scalar multiplication

 \blacksquare Let λ be any scalar and $A = [a_{ij}]$ is an $m \times n$ matrix. Then $\lambda A = [\lambda a_{ij}]$ for $1 \leq i \leq m, 1 \leq j \leq n$, i.e., each element in A is multiplied by λ .

1 2 3 $0 \quad 1 \quad 4 \mid$ $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$ Example: $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \end{bmatrix}$. Evaluate 3A.

> 3×1 3 $\times 2$ 3 $\times 3$ 3 6 9 $3A =$ 3×0 3 $\times 1$ 3 $\times 4$ 0 3 12 $\begin{bmatrix} 3 \times 1 & 3 \times 2 & 3 \times 3 \end{bmatrix}$ $\begin{bmatrix} 3 & 6 & 9 \end{bmatrix}$ $A = \begin{bmatrix} 3 \times 0 & 3 \times 1 & 3 \times 4 \end{bmatrix} = \begin{bmatrix} 0 & 3 & 12 \end{bmatrix}$

12 **-In particular,** $\lambda = -1$ **, i.e.,** $-A = [-a_{ij}]$ **. It's called** the $negative$ of A . Note: $A - A = 0$ is a zero matrix

Properties

Matrices *A*, *B* and *C* are conformable,

 $\blacksquare A + B = B + A$ (commutative law)

 $\blacksquare A + (B + C) = (A + B) + C$ (associative law)

 $\mathbb{P}(\mathcal{A} + \mathcal{B}) = \lambda \mathcal{A} + \lambda \mathcal{B}$, where λ is a scalar (distributive law)

Can you prove them?

Properties

Example: Prove $\lambda(A + B) = \lambda A + \lambda B$.

Let $C = A + B$, so $c_{ii} = a_{ii} + b_{ii}$.

Consider $\lambda c_{ij} = \lambda (a_{ij} + b_{ij}) = \lambda a_{ij} + \lambda b_{ij}$, we have, $\lambda C = \lambda A + \lambda B$.

Since $\lambda C = \lambda(A + B)$, so $\lambda(A + B) = \lambda A + \lambda B$

Matrix multiplication

 $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 \\ 2 & 3 \\ 0 & 0 \end{bmatrix}$ $c_{21} = 0 \times (-1) + 1 \times 2 + 4 \times 5 = 22$ \blacksquare If $A = [a_{ij}]$ is a $m \times p$ matrix and $B = [b_{ij}]$ is a $p \times n$ matrix, then AB is defined as a $m \times n$ matrix $C = AB$, where $C = \left[{c_{ij} } \right]$ with tions of m

Aatrix mult

is a $m \times p$ ma:

then AB is d

AB, where $C =$
 $\frac{1}{1}b_{1j} + a_{i2}b_{2j} + ... + a_{i}b_{i}$
 $= \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \end{bmatrix}$ 1 $...+a_{ip}b_{pj}$ for $1 \leq i \leq m, 1 \leq j \leq n$. 2 Operations of matrices

Matrix multiplication

If $A = [a_{ij}]$ is a $m \times p$ matrix and $B = [b_{ij}]$ is a
 $\times n$ matrix, then AB is defined as a $m \times n$

atrix $C = AB$, where $C = [c_{ij}]$ with
 $=\sum_{k=1}^{n} a_{ik}b_{ij} = a_{ii}b_{ij} + a_{i2}b_{2j}$ 2 Operations of matric
 Matrix multiplica
 If A = $[a_{ij}]$ is a $m \times p$ matrix and
 $\lambda \times n$ matrix, then *AB* is define

matrix *C* = *AB*, where *C*= $[c_{ij}]$ w
 $\sum_{y}^{p} = \sum_{k=1}^{p} a_{ik}b_{kj} = a_{i}b_{i} + a_{i2}b_{2j} + ... + a_{ip}b_{pj}$ $k=1$ **2 Operations of matrices**
 Matrix multiplication
 Fig. 4 a $[a_{ij}]$ is a $m \times p$ matrix and $B = p \times n$ matrix, then AB is defined as a matrix $C = AB$, where $C = [c_{ij}]$ with $c_{ij} = \sum_{k=1}^{n} a_{ik}b_{kj} = a_{ik}b_{ij} + a_{i2}b_{2j} + ... + a_{ip}$ 1 2 3 0 1 4 $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$ $A = \begin{bmatrix} 0 & 1 & 4 \end{bmatrix}$ $1 - 2$ 2 3 and $C \pm A$ 5 0 $\begin{bmatrix} -1 & 2 \end{bmatrix}$ $= 2 \cdot 3$ and $C =$ $\begin{bmatrix} 5 & 0 \end{bmatrix}$ Example: $A = \begin{bmatrix} 1 & 2 \ 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 3 \end{bmatrix}$ and $C = AB$. **2.2 Operations of matrice:**

Matrix multiplicatic

Fif $A = [a_{ij}]$ is a $m \times p$ matrix and
 $p \times n$ matrix, then AB is defined a

matrix $C = AB$, where $C = [c_{ij}]$ with
 $c_{ij} = \sum_{k=1}^{p} a_{ik}b_{kj} = a_{i1}b_{1j} + a_{i2}b_{2j} + ... + a_{ip}b_{pj}$ ations of mat

Matrix multipl

is a $m \times p$ matri

x, then AB is det

AB, where $C = [c$
 $a_n b_{1j} + a_{i2} b_{2j} + ... + a_{ip} b_{pj}$
 $= \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 \\ 0 & 1 & 4 \end{bmatrix}$
 $B = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \end{bmatrix}$
 of matrice:

multiplication

p matrix and

AB is defined of
 $2 \text{re } C = [c_{ij}] \text{ with }$
 $x + ... + a_{ip}b_{pj}$ for 1
 $A = \begin{bmatrix} -1 & 2 \\ 2 & 3 \\ 5 & 0 \end{bmatrix}$
 $B = \begin{bmatrix} -1 & 2 \\ 2 & 3 \\ 5 & 0 \end{bmatrix}$
 $C_{21} = 0 \times (-1)$ ations of mat

Matrix multipl

is a $m \times p$ matri

x, then AB is det

AB, where $C = [c$
 $a_n b_{1j} + a_{i2} b_{2j} + ... + a_{ip} b_{pj}$
 $= \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 \\ 0 & 1 & 4 \end{bmatrix}$
 $B = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \end{bmatrix}$
 of matrice:

multiplication

(p matrix and

AB is defined of
 $\begin{aligned} \text{where } C = [c_{ij}] \text{ with } \\ \text{where } C = [c_{ij}] \text{ with } \\ \text{where } C = \begin{bmatrix} 1 & 2 \\ 2 & 3 \\ 4 & 5 \end{bmatrix} \end{aligned}$ of matrices

x multiplication

x p matrix and $B = [b_{ij}]$ is a

AB is defined as a $m \times n$

nere $C = [c_{ij}]$ with
 $b_{2j} + ... + a_{ip}b_{pj}$ for $1 \le i \le m, 1 \le j \le n$.
 $\begin{bmatrix} -1 & 2 \\ 2 & 3 \\ 4 & 5 \end{bmatrix}$, $B = \begin{bmatrix} -1 & 2 \\ 2 & 3 \\ 5 & 0 \end{bmatrix}$ ations of matrices

Matrix multiplication

1 is a $m \times p$ matrix and $B = [b_{ij}]$ is a

ix, then AB is defined as a $m \times n$
 $= AB$, where $C = [c_{ij}]$ with
 $a_n b_{1j} + a_n b_{2j} + ... + a_{ip} b_{pj}$ for $1 \le i \le m, 1 \le j \le n$.
 $A = \begin{bmatrix} 1 & 2 & 3 \\$

Matrix multiplication

Matrix multiplication

In particular, A is a $1 \times m$ **matrix and** B is a $m \times 1$ matrix, i.e., 11 $\lceil b_{11} \rceil$ *b*

> 21 $\overline{}$ *b* $B = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$

$1 k^{\nu} k!$ $\frac{u_{11} u_{11}}{1}$ $\frac{u_{12} u_{21}}{2!}$ \cdots $\frac{u_{1m} u_{m1}}{m}$... $=\sum_{k=1}^{\infty} a_{1k} b_{k1} = a_{11} b_{11} + a_{12} b_{21} + \ldots + a_{1m} b_{m1}$ *m* $k^{2}k^{1}$ \cdots $k^{1}1^{2}1^{1}$ \cdots $k^{1}2^{2}2^{1}$ \cdots k^{1} \cdots k^{n} m^{n} *C*_{*C*</sup> *C c c c c a***_{1***m***} ***D B* $=$ $\begin{bmatrix} b_{21} \\ \vdots \\ b_{m1} \end{bmatrix}$
b_{*m*1} *c <i>c c z**a***_{***n***}***b***_{***n***}** *e a***_{***b***}^{***b***_{***n***} ***<i>t c c <i>f a***_{***b***}***<i>b***₁} </sub>**} then $C = AB$ is a scalar.

1

1

 $\lfloor b_{m1} \rfloor$

b

 $\frac{1}{\sqrt{2}}$

k

Matrix multiplication

▪BUT *BA* is a *m m* matrix!

 \blacktriangleright So $AB \neq BA$ in general!

Properties

Matrices *A*, *B* and *C* are conformable,

- $\blacksquare A(B+C) = AB + AC$
- $\blacksquare (A + B)C = AC + BC$
- \blacksquare *A*(*BC*) = (*AB*) *C*
- $\blacksquare AB \neq BA$ in general
- $\blacksquare AB = 0$ NOT necessarily imply $A = 0$ or $B = 0$

▪*AB = AC* NOT necessarily imply *B = C*

Properties

Example: Prove $A(B+C) = AB + AC$ where A, B and *C* are *n*-square matrices

Let $X = B + C$, so $x_{ij} = b_{ij} + c_{ij}$. Let $Y = AX$, then

$$
y_{ij} = \sum_{k=1}^{n} a_{ik} x_{kj} = \sum_{k=1}^{n} a_{ik} (b_{kj} + c_{kj})
$$

=
$$
\sum_{k=1}^{n} (a_{ik} b_{kj} + a_{ik} c_{kj}) = \sum_{k=1}^{n} a_{ik} b_{kj} + \sum_{k=1}^{n} a_{ik} c_{kj}
$$

So $Y = AB + AC$; therefore, $A(B + C) = AB + AC$

1.3 Types of matrices

- **Eldentity matrix**
- **-The inverse of a matrix**
- ▪The transpose of a matrix
- ▪Symmetric matrix
- ▪Orthogonal matrix

Identity matrix 1.3 Types of matrices

 \blacksquare A square matrix whose elements $a_{ij} = 0$, for $i > j$ is called upper triangular, i.e., $\lceil a_{11} \mid a_{12} \mid ... \mid a_{1n} \rceil$ a_{11} a_{12} a_{1n} a_{1n}

 \blacksquare A square matrix whose elements $a_{ij} = 0$, for i < j is called lower triangular, i.e., $\lceil \frac{a_{11}}{0} \rceil$ 0 \ldots 0 \lceil

 0 a_{22} a_{2n}

n

 $\begin{bmatrix} 0 & 0 & a_m \end{bmatrix}$

Identity matrix 1.3 Types of matrices

- ▪Both upper and lower triangular, i.e., *aij =* 0, for
- $i \neq j$, i.e., $a_{11} = 0$. 22 and the contract of the con $0 \ldots 0$ $0 \quad a_{22} \quad 0 \quad 0$ 0 a l $\begin{bmatrix} a_{11} & 0 & \dots & 0 \end{bmatrix}$ wang kata sa kata sa matang pangangang pang $\begin{bmatrix} 0 & 0 & a_{nn} \end{bmatrix}$ *a*₁₁ **b** ... (a_{22} **b** \Box *D* = 1 *a*
	- is called a diagonal matrix, simply
	- $D = diag[a_{11}, a_{22}, ..., a_{nn}]$

Identity matrix 1.3 Types of matrices

- **•In particular,** $a_{11} = a_{22} = ... = a_{nn} = 1$, the matrix is called identity matrix.
- ▪Properties: *AI = IA = A*

Examples of identity matrices: $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 0 & 1 \end{bmatrix}$ 0 1 $\begin{bmatrix} 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 \end{bmatrix}$ ana $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 0 1 0

1 0 0

 $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$

 $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$

0 0 1

Special square matrix 1.3 Types of matrices

BA in general. However, if two square matrices *A* and *B* such that *AB = BA*, then *A* and *B* are said to be *commute*.

Can you suggest two matrices that must commute with a square matrix *A*?

Ans: *A* itself, the identity matrix, ..

If A and B such that $AB = -BA$, then A and B are said to be *anti-commute*.

The inverse of a matrix 1.3 Types of matrices

Example 1 That $AB = BA = I$, then *B* is called the inverse of *A* (symbol: *A*-1); and *A* is called the inverse of *B* (symbol: *B*-1). 25

a matrix

i that $AB = BA =$

se of A (symbol: B

e of B (symbol: B
 $\begin{bmatrix} 6 & -2 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$

se of matrix A.
 $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$
 $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ 25

a matrix

i that $AB = BA =$

se of A (symbol: B

e of B (symbol: B
 $\begin{bmatrix} 6 & -2 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$

se of matrix A.
 $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$
 $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ 25

a matrix

i that $AB = BA =$

se of A (symbol: B

e of B (symbol: B
 $\begin{bmatrix} 6 & -2 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$

se of matrix A.
 $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$
 $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ **natrices**
 AB such that $AB =$
 AB inverse of A (symproximal points)
 $\begin{bmatrix}\n 2 & 3 \\
 3 & 3 \\
 2 & 4\n \end{bmatrix}\n\begin{bmatrix}\n 6 & -2 & -3 \\
 -1 & 1 & 0 \\
 -1 & 0 & 1\n \end{bmatrix}$

The inverse of matrices
 $AB = BA = \begin{bmatrix}\n 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1\n \end{bmatrix}$ es

f a matrix

h that $AB = BA = I$,

se of A (symbol: A⁻¹);

e of B (symbol: B⁻¹).
 $=\begin{bmatrix} 6 & -2 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$

se of matrix A.
 $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

26 trices

se of a matrix

B such that $AB = BA = I$,

inverse of A (symbol: A⁻¹);

nverse of B (symbol: B⁻¹).

3

3

3
 $B = \begin{bmatrix} 6 & -2 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$

inverse of matrix A.
 $= BA = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{$

1 2 3

 $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$ 6

1 1 0 1 0 1 *B* = 1 1 0 $=\begin{vmatrix} -1 & 1 & 0 \end{vmatrix}$ $\begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$ $1 \quad 3 \quad 3 \quad B = |-1|$ $1 \quad 2 \quad 4 \quad 1 \quad 1 \quad$ $A = \begin{bmatrix} 1 & 3 & 3 \end{bmatrix}$ *B*: $=$ $\begin{bmatrix} 1 & 3 & 3 \\ 1 & 2 & 4 \end{bmatrix}$ $\begin{bmatrix} D = -1 \\ -1 \end{bmatrix}$ Example:

Show *B* is the the inverse of matrix *A*.

Ans: Note that

Can you show the details?

 $6 -2 -3$ -3

 $\begin{bmatrix} 6 & -2 & -3 \end{bmatrix}$

The transpose of a matrix 1.3 Types of matrices

- ▪The matrix obtained by interchanging the rows and columns of a matrix *A* is called the transpose of *A* (write *A^T*).
- Example: 1 2 3 $4 - 5 - 6$ $1 - 2$ $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$ $A = \begin{bmatrix} 4 & 5 & 6 \end{bmatrix}$ [1 1 4 $\begin{bmatrix} 1 & 4 \end{bmatrix}$
- The transpose of *A* is 2 5 $A^T = \begin{bmatrix} 2 & 5 \end{bmatrix}$

•For a matrix $A = [a_{ij}]$ **, its transpose** $A^T = [b_{ij}]$, where $b_{ii} = a_{ii}$.

3 6

 $\begin{bmatrix} 3 & 6 \end{bmatrix}$

1.3 Types of matrices

Symmetric matrix

- \blacksquare A matrix A such that $A^T = A$ is called symmetric, i.e., $a_{ji} = a_{ij}$ for all *i* and *j*.
- $-A + A^T$ must be symmetric. Why?
- Example: $A = \begin{vmatrix} 2 & 4 & -5 \end{vmatrix}$ is symmetric. $2 \quad 4 \quad -5$ is symme $A = \begin{bmatrix} 2 & 4 & -5 \\ 3 & -5 & 6 \end{bmatrix}$ is symmed
and the symmetric symmetric
- \blacksquare A matrix A such that $A^T = -A$ is called skewsymmetric, i.e., $a_{ii} = -a_{ii}$ for all *i* and *j*.

 $1 - 2 - 3$

 $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$

 $3 - 5$ 6

■*A* - *A^T* must be skew-symmetric. Why?

Orthogonal matrix 1.3 Types of matrices

- \blacksquare A matrix *A* is called orthogonal if $AA^T = A^T A = I$, i.e., $A^{T} = A^{-1}$
- Example: prove that $A = 1/\sqrt{3}$ $-2/\sqrt{6}$ 0 is orthogonal. $1/\sqrt{3}$ 1/ $\sqrt{6}$ -1/ $\sqrt{2}$ 1 $1/\sqrt{3}$ $-2/\sqrt{6}$ 0 1 1 S $1/\sqrt{3}$ 1/ $\sqrt{6}$ 1/ $\sqrt{2}$ 1 $\left[1/\sqrt{3} \right]$ $\left[1/\sqrt{6} \right]$ $\left[1/\sqrt{2} \right]$ $\left[\frac{1}{\sqrt{3}}\right]$ $\left[\sqrt{6}\right]$ $\left[\sqrt{2}\right]$ $A = 1/\sqrt{3}$ $-2/\sqrt{6}$
- Since, $A^T = \begin{bmatrix} 1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \\ 1/\sqrt{6} & -2/\sqrt{6} & 1/\sqrt{6} \end{bmatrix}$. Hence, $AA^T = A^T A = I$. $1/\sqrt{2}$ 0 $1/\sqrt{2}$ $A^T = |1/\sqrt{6} -2/\sqrt{6}$ $\left[\frac{1}{\sqrt{3}}\right]$ $\sqrt{3}$ $\left[\frac{1}{\sqrt{3}}\right]$ $=$ \pm $1/\sqrt{0}$ \pm \pm $\sqrt{0}$ \pm $\sqrt{0}$ \pm \pm \pm \pm -1 / $\sqrt{2}$ and $\sqrt{2}$ and $\sqrt{2}$ and $\sqrt{2}$ $\lfloor -1/\sqrt{2} \rfloor$ $\lfloor -1/\sqrt{2} \rfloor$ details?
- 29 We'll see that orthogonal matrix represents a rotation in fact!

1.4 Properties of matrix

 $\blacksquare (AB)^{-1} = B^{-1}A^{-1}$ $\blacksquare (A^T)^T = A$ and $(\lambda A)^T = \lambda A^T$

 \bullet $(A + B)^{T} = A^{T} + B^{T}$

 $\blacksquare (AB)^T = B^T A^T$

1.4 Properties of matrix

- Example: Prove $(AB)^{-1} = B^{-1}A^{-1}$.
- Since (AB) $(B^{-1}A^{-1}) = A(B B^{-1})A^{-1} = I$ and
- $(B^{-1}A^{-1}) (AB) = B^{-1}(A^{-1}A)B = I.$
- Therefore, *B*-1*A*-1 is the inverse of matrix *AB*.

Determinant of order 2

21 $\frac{u_{22}}{2}$ |

Consider a 2 2 matrix: 11 12 a_n a_n a_n $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ a_{21} a_{22} | a_{33} $\begin{bmatrix} a_{11} & a_{12} \end{bmatrix}$ $=\begin{bmatrix} 1 & 1 \\ a_{21} & a_{22} \end{bmatrix}$

•Determinant of *A***, denoted |** *A* **|, is a <u>number</u>
and can be evaluated by
** $|A| = \begin{vmatrix} a_{11} & a_{12} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$ and can be evaluated by

$$
|A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}
$$

Determinant of order 2

Easy to remember (for order 2 only)..

Example: Evaluate the determinant: $\begin{bmatrix} 3 & 4 \end{bmatrix}$

$$
\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = 1 \times 4 - 2 \times 3 = -2
$$

1 2

The following properties are true for determinants of *any* order.

1. If every element of a row (column) is zero,

e.g., $\left| \frac{1}{2} \right| = 1 \times 0 - 2 \times 0 = 0$, then $|A| = 0$. $1 \times 0 - 2 \times 0 = 0$, Then $|A| =$ $0 \quad 0 \quad 0$ = | × U – 2 × U =

3. *|AB| = |A||B|*

- Example: Show that the determinant of any orthogonal matrix is either $+1$ or -1 .
- For any orthogonal matrix, $AA^T = I$.
- Since $|AA^T| = |A|/A^T| = 1$ and $|A^T| = |A|$, so $|A|^2 = 1$ or $|A| = \pm 1$.

36

You are encouraged to find the determinant by using other rows or columns

Its determinant can be obtained by:

Consider an example: 1 2 3 456 7 8 9 $A = \begin{bmatrix} 4 & 5 & 6 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$ $\sqrt{1-\epsilon}$ $\begin{bmatrix} 4 & 3 & 0 \\ 7 & 8 & 9 \end{bmatrix}$

1.5 Determinants of order 3

1.6 Inverse of a 3×3 matrix

Cofactor matrix of $0 \quad 4 \quad 5$ $A = \begin{bmatrix} 0 & 4 & 5 \end{bmatrix}$ $\begin{bmatrix} 0 & 4 & 3 \\ 1 & 0 & 6 \end{bmatrix}$

The cofactor for each element of matrix A:

1 2 3

 $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$

1 0 6

1.6 Inverse of a 3×3 matrix

1.6 Inverse of a 3×3 matrix

